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A variational technique has been used in predicting impedance and
dispersion characteristics for the cold test measurements of helical
traveling wave tubes. The variational formula of Bevensee is used in
this method. An optimal combination of slow wave trial fields is found
using Rumsey 's -reaction integral as a measure of equivalence to the true
fields. In contrast to other approximate analyses, the variational
formulation has the advantage of including the exact geometry and .(Cont')__
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4dielectric of the helical support.

In order to verify the technique, two trial field regions have been
used in successfully analyzing the sheath helix and the case of a homo-
geneous dielectric support. A composite metal-ceramic helix has also
been analyzed. Simulation for the composite helix shows a reasonable
dispersion for some combinations of harmonics over a wide frequency
range when results are compared to experiment. However, the impedancecomputation is not yet satisfactory.

In future developments, major modifications will be made to the
trial fields in order to satisfy all boundary conditions simultaneously
and improve the predicted impedance. In addition, the technique will be
applied to other devices including wedge and rod supports.
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EVALUATION

A significant cost associated with the design and development of helical

traveling wave tubes has been incurred by "cut and try" techniques. Various

analytic methods have been developed to attempt to adequately model a slow

wave structurehowever, these at best have been first order approximations.

The variational technique described herein and implemented on the RADC GCOS

computer is a large deviation from present "lumped" models. Although not

completely refined, the variational technique promises to deliver an order

of magnitude improvement in helical structure modeling without resorting to

I"correction factors"that are structural type dependent. Therefore, in tube

design, it may be possible using the variational computer software to

completely design a workable structure in one or two hardware iterations.

Project Engineer
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SECTION I

*INTRODUCTION

In November 1979,Harris SAI, Inc., Ann Arbor, Michigan

began the development of computer programs for variational
analysis of helical slo w-wave structures for O-type

traveling-wave tubes. The basic objective was to develop

more accurate computer models than were previously available

for the computation of dispersion, impedance and attenuation

and thereby minimize the cold testing needed for development

of new TWT designs.

This Final Technical Report describes the progress in

the development and application of the variational technique

achieved under the contract. Section II describes the

objectives of this research effort. Section III presents

the methodology of the techniques developed. Numerical

results for the sheath helix are summarized in Section IV.

The analysis on an homogeneous dielectric support is detailed

in Section V. Work done on the spiral dielectric structure

and comparisons between simulation and cold test data are

found in Section VI. The consequences of Bevensee's choice

of trial fields is examined in Section VII, and alternate

trial fields are proposed for future work in Section VIII.

Conclusions are presented in Section IX.

This effort was supported by Rome Air Development Center,

Griffiss AFB, New York under Contract No. F30602-79-C-0013.
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SECTION II

RESEARCH OBJECTIVES

In helical traveling-wave tubes, the slow-wave circuit
is commonly supported inside a vacuum envelope by means of
dielectric rods, wedges, or more recently by a ceramic

coating deposited upon the helical tape. These geometries
are illustrated in Figures 1 through 4. It is known from

experiments that these supports increase the dispersion and
lower the interaction impedance. Also, in some designs

longitudinal vanes or other configurations are inserted
inside a conducting shield to reduce dispersion and taper

phase velocity.

In a typical tube development, the slow wave structure

is designed using approximate theories and then is cold
tested experimentally because no accurate theoretical predic-

tions of dispersion and impedance have been available. This
can be attributed to the necessary approximations used in

the popular non-variational, analytic techniques. For example,

the conducting tape helix is often modeled as a spiralling

conducting sheath1'2 or else a particular current distribution
is assumed over the metal surface. 3'4 Moreover, existing

theories of dielectric loading have treated the dielectric

supports, no matter what their shape, as filling the entire
region between the helix and shield.2 ,5 Usually the effective

dielectric constant either is adjusted phenomologically or else

is scaled by the proportion of volumes occupied by the support.
A more rigorous treatment states the boundary condition in

full but uses approximate radial propagation constants in the
6

dielectric and vacuum to obtain analytic results. Vane

loading has been treated by an equivalent transmission-line

2
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Figure 1. The tape helix.
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CERAMIC CERAMIC,.
RODS, VANES.

Figure 2. TWO methods Of Supporting a helix.
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Ceramic Support Rods

j Radial Loading Fins (metal)

Helix

Figure 3. Vane-loaded helix.
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conducting shield

helical tap

V\\

a) Homogeneous dielectric sleeve

conducting shield

b) Composite metal-ceramic helix

Figure 4. Supports analyzed.
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5method, but the theory assumes only a single space narmonic.

During this contract, Harris SAI, Inc. began adapting the

variational technique of Bevensee 7 to treat various dielectric-

supported slow-wave structures. U"like other techniques, the

actual geometry and dielectric of the structures is used. The
main objectives of the work are to (1) develop an accurate

computational analysis of supported, helix-type structures

and (2) verify the theory using existing cold-test data.

The structures originally selected for study under this

contract were sheath helices, and radially thin tape helices

supported in metal shields by a homogeneous dielectric region,Ia spiralling dielectric, rods, or wedges which may be

asymetrically placed. Of these configurations, the analyses

for the sheath helix and tape helices supported by homogeneous

and spiral dielectric were fully developed. The latter case

had its true, radial tape thickness modeled so that all

structural dimensions were employed in the analysis.

The analysis of the sheath helix was included so that the

computer program could be verified. The homogeneous support

structure is a typical approximation used in analyzing compli-

cated devices. Comparisons between the variational analysis

and Paik theory are presented because the Paik theory also

makes this approximation of an homogeneous external region.

The particular computer program referenced in this report as

Paik is based upon theory developed by Watkins,2 Ash, 8 and

Paik. 5 It is part of the Harris SAI's TWA small-signal gioup

of programs9 for which it estimates cold test data. The

results from the spiral dielectric support were compared with

both the Paik theory and experimental cold test data.

d I
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SECTION III

VARIATIONAL TECHNIQUE

The objective of the variational technique is to combine

trial cylindrical electric and magnetic fields in a manner
that appropriately satisfies all boundary conditions. A
variational formula given by Bevensee7 is used because it allows
the derivation of the dispersion relation prior to the

calculation of trial field coefficients. In this section, the
principal assumptions of the model are presented. Trial fields
and boundary conditions are developed, and Bevensee's variational
expression is introduced. This formula is shown to be actually
a specific application of the reaction concept developed byI 10Rumsey which uses Bevensee's trial fields and boundary

conditions. From the reaction concept, alternate variational
forms are developed, symmetric properties of these expressions
are shown, and convergence is examined.

A. Assumptions

In the computational analyses the slow-wave structure is
modeled as follows:

(1) The slow-wave structure is assumed to be infinite
in length with fixed period. Thus, end effects are neglected
and a tapered helix is treated as if its local pitch is constant.

(2) The effect of skin loss is sufficiently small that

the fields within the metal are negligible and the surface
boundary conditions for a perfectly conducting surface apply.
This makes the fields and propagation constants ineependent of

the conductivity.

(3) The metal and dielectric surfaces are perfectly
smooth and unperturbed throughout the structure.

8
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(4) The dielectric material is uniform, isotropic and

lossless.

(5) The magnetic permeability has the free space value,

denoted P

(6) Perfect contact exists at any dielectric-metal

interface.

B. Notation

All electric and magnetic fields have the exp(jwt) time

convention where w = 2wx frequency. References will be made

to particular dimensions of the slow-wave structure. Figures

5 and 6 illustrate the various volumes and surfaces. The

following definitions are convenient.

Divide the single period of the slow wave structure into

three volume regions as follows:

Vi  free space within the helix;

V0  free space outside the helix;

Vd dielectric volume.

Define the surfaces of the region interfaces as follows:

Wi  inner wire surface;
1

0 outer wire surface bounded by free space;

Wd outer wire surface bounded by dielectric material;

DO  interface of regions Vi and Vo at helix radius
01

(interior and exterior free space regions);

Dd interface of regions Vi and Vd at helix radius

(interior free space and dielectric regions);

A transverse dielectric boundary (extending radially

outwards from the helix radius).

- - n



Shield

W Dielectrice 1 ctr,
Helix 

m i X Dd  m

V.
1 r

z

a. Longitudinal section

Shield Dielectric

Helix .0

r -W.
WidVi z

axis

b. Transverse section
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II
Let the helix have pitch angle * and radius a. Let the shield

have radius a5

Cylindrical coordinates (r, 0, Z) are used throughout

this report. The following unit vectors will be used:

r outward normal;IA
n normal into helical surface, which is + r for a thin

tape helix;

t normal to helix surface and k or (0, -sin *, cos )

in cylindrical coordinates;

m into the dielectric and normal to the surface.

C. Boundary Conditions and Trial Fields

Currently, two types of slow-wave structures have been
successfully analyzed. Each has a helically-wrapped conducting
tape supported within a shield. The support of each structure

is periodic. One support is just an isotropic homogeneous

dielectric placed between the tape and the shield (see Figure
4a). The second is a composite metal ceramic structure, meaning

that the isotropic dielectric has been deposited on top of

the tape giving a spiralling dielectric support (see Figure 4b).

The correct fields must satisfy Maxwell's equations, have
periodic properties, and satisfy the correct boundary conditions

at all surfaces.

The variational formulas produce best results when the
trial solutions are close to the correct solution. Bevensee

expresses his trial functions in cylindrical geometry. If the
longitudinal axis of a tube is in the Z direction the periodicity

9f the true field implies that the propagating field must be
a sum of cylindrical harmonics with phase

12
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I n = -B0 Z + n( - 2Z) , (1)

where p is the period of the wrapping along Z. If the radial

dependence is denoted nm(r) for each harmonic, the complete

field is

F = nm(r) e n (2)

Equation 1 makes the phase such that the field is invariant

parallel to the helical tape except for propagation exp(-ja0 Z).

This ao is the fundamental propagation constant and one of the

main quantities that the variational technique calculates.
Bevensee forced each term of Equation 2 to satisfy Maxwell's

equations. Then n=m and each component of Rn is a linear

combination of modified Bessel functions of order n denoted

In(Ynr), Kn(Ynr). Here

Y2 $2 -k2 3

Yn = 8nk (3)

is the radial propagation constant where

= B0 + ZI n (4)n 0 p

and k is the wave number of the space.

Although individually for each harmonic n, Bevensee's

trial fields have the correct phase and satisfy Maxwell's

equations, they do not satisfy boundary conditions. Bevensee

tries to piece together a satisfactory solution. First,he

partitions the structure into regions Vi, Vo, VD defined earlier.

For each harmonic, n, the inner region, Vi , has a TE and TM

set of fields written as an I-type Bessel function.

13
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Simultaneously, each outer region has TE and TM sets dependent

upon a linear combination of I and K-type Bessel functions

such that the boundary conditions at the shield are satisfied.

Physically, these combinations give for each n an exponentially

growing field for the inner region and an exponentially decaying

field in the outer region. By considering all harmonics n, it

is assumed that the boundary conditions at the helical tape,

trial region interfaces and dielectric-free space interfaces

can be satisfied through an optimal selection of TE and TM

coefficients.

D. Bevensee's Variational Formula

The variational equation presented in this section applies

for a wire or tape helix of arbitrary cross section wound on

an arbitrary cylindrical surface. It is based on the work of7
Bevensee, but includes also the third, dielectric, region

outside the helix.

The electric and magnetic fields for all harmonics n

in Equation 1 within each region are defined as follows:

in region Vi: e and h;

4. 4
in region Vo: E and H;

in region VD: t and i.

The longitudinal components of the TE or TM field in each
region are

hz= e)OO Cln In(Ynr)ejn, (5a)

eZ  = en8 0z Cn In(Ynr)e n, (5b)

Hz = ejBOZ . C3n Sn(Ynr) ejn* (6a)

14



e 5n 2. nYr) en4  , (7a)

ifa~ = JO jn p

z ~ 6n tn Ynre, (7b)

where 2W=e- z (8)
p

n n (9)

n (10)

X n D a

Rn = Kn(yr)-' (r
flI n(ya n (11)

n S)

K''(ya
S nf yr) _ --I n(yr) (12)

n (ya)

T n = K n'ar K n(?a S)/In (?~as) I n(?'r) (13) '
= K (?r) -K(?a )/I'Sga ) ~(14)
n n n S n s nl

Provided that the interface exists in the particular helix

structure considered, boundary conditions on the tangential

field components at each volume interface become:

-49 x r = 0 or surface Doll (15)

(H-H x r 0 (16)

e xr 0 Oon W. (17)

E xr 0 Oonl W (18)

15
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xr 0 on Wd (19)

(e b x r 0 on surface Dd , (20)

(_-) x r = Oon surface Dd ( (21)

( -) x t = 0 on surface A , (22)

( -) x t = 0 on surface A . (23)

Bevensee has devised a formula dependent upon the boundary

condition mismatch:

o = f e*(V xh - jW e+ )dV - x '*(V x + jw A)dV
Vi + 0+ V.+0

-4.

f E*"(V x + - jwCE+)dV - H*(V x g+ + jwp0g+)dVV. Vo
0V

+ V d*"(v x 9+ - j)welt)dV - f V *(V x I+ + -W10 +)dVv d  vd

+ e+ x h*.n dS +f + x *.ndS + f + x *-ndS
Wi W Wd

( * +*) x (h+ - A+)-r dS + f (e - E r dS

2 -- + + 2 '+ +

DO  DO

2Dd 2 d +

2 + 4

1 t i *+ ' (A* + P*).mdS .(24)
2 A

16
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The "+" fields ix. Equation 24 are the correct solution

propagating in the z direction, while the "-" fields are a

second set of fields propagating in the -z direction. Because

the trial fields satisfy Maxwell's equations, the volume integrals

are identically zero when the dielectric constant equals that of

the trial fields throughout the trial field region.

This expression is variational in the sense that any

arbitrary perturbation in the "-" fields for the correct "+"

fields still yields a zero in expression (24) and vice versa.

This characteristic is used to derive the field coefficients.

Assuming that the field solution can be expressed as a sum of

slow wave cylindrical harmonics within each trial region, Equation

24 becomes a quadratic form in terms of the "+" and "-" field

coefficients

0 = B M(0 0 )C , (25)

where C is a column vector of all true coefficients in Equations

5 through 10 and B is the column vector of the "-" field

coefficients. The t denotes conjugate transpose. The square

matrix M(80 ) depends upon 0, the geometry of the structure, and

the number of harmonics combined. Because arbitrary perturbations

in B can be made from the correct fields and the result of 0

still remains on the left hand side of 25, the determinant of

M(80 ) must be 0. Bevensee's technique proceeds in two steps:

(1) Search for the 0 which makes det[M(003 = 0

(2) Find the eigenvector corresponding to the zero

eigenvalue and interpret this as the set of coefficients.

Bevensee justifies his formula as an application of an eigen-

value problem developed by Morse and H. Feshbach. In this

17



derivation he has used trial fields which satisfy boundary

conditions by means of smoothing functions within a transition

region. As the transition region becomes smaller, the eigenvalue

estimate of w(80 ) becomes Bevensee's formula. This shows that

the a0 found by Bevensee's solution is such that w(%0) is an

upper bound, which implies that a0 is either an upper bound or

lower bound depending upon the slope of the w-8 dispersion

relation.

E. Reaction Method

The reaction method was developed by Rumsey in 1954.10

Virtually all variational expressions can be derived directly
11

by the application of the reaction concept. Harrington, in

particular, has developed variational formulas using the reaction

method for cavities and wave guides. Moreover, he has treated

problems of inhomogeneously-filled wave guides with trial

fields having discontinuities across a surface. These

discontinuities are not as severe as those needed by Bevensee

because his boundary value problem was with only one of E or H

and along a surface with one coordinate constant. Nevertheless,

the reaction method can easily incorporate the trial fields

of Bevensee. In this section, the reaction integral is first

presented. Bevensee's method is derived from the viewpoint

of reaction. In later sections, the reaction formulation will

be used in discussions of convergence of Bevensee's fbrmula.

Modification of the variational expression will be made based

upon principles of the reaction method.

Denote the fields produced by sources a alone as Ea , Ha

and the fields produced by sources b alone as b' 'b* The

reaction of fields a on sources b is defined as

= f1 ( a " b- Ha Mb)dV • (26)

V

18



Reaction is closely linked to reciprocity, which in the above

notation becomes

=<(b, (27)

For waveguide problems, it is important to use an adjoint

system to a, denoted a* consisting of fields Ea, -H* produced
by sources M*, -J*. For homogenous regions, a* correspondsa a
to the field distribution traveling in the direction opposite

a along the longitudinal direction of the wave guide.

When systems a and b have the same longitudinal propagation

constant,the reaction of fields a* on source b becomes a surface

integral

= ff * + * Mb dS , (28)

and reciprocity is expressed by

Caba* (29)
<a",b = b',a .(30)

In variational analyses, reaction can be viewed as a

measure of equivalency.1 2  In fact, a source must have the
same reaction with all fields equivalent over its extent so

reaction is a necessary, though not sufficient, test for

equivalent fields. For the source-free modes sought by our
analysis of helical slow-wave devices, the correct fields, Ec
and Hc, are unsupported by currents away from the conducting

walls. As a consequence, if an arbitrary system a* has fields

Uhich satisfy the correct boundary conditions at conducting
surfaces, the reaction of fields of a* on the currents of the

19
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exact system, which are only at the conducting walls, is zero:

<a*,c> =  Kc*,a> = 0 . (31)

Bevensee's formula can be recovered directly from Equation

31. Although the fields of system a satisfy the same boundary

conditions as the correct system, fields of a may be supported
by currents inside the wave guide. For Bevensee's trial fields,

compensating currents are added to make the fields continuous

at the free space trial region interfaces and to set the

tangential electric field to zero at the tape. Specifically,we

add currents

MT - (32)n n

to force the tangential field to zero on this conductor, where

n is the harmonic number and T denotes tape. Simultaneously,

currents

Mo = - x(EI -E ) , (33a)
n n n

and
0 +m x (Hn -H ) (33b)n n n

are added to remove the discontinuity in electric or magnetic

fields at the other interfaces of trial functions regions (I)
and (II). Because Bevensee's trial functions are source-free

except at the interface of his trial function regions and because

the trial functions satisfy Maxwell's equations, the surface
integral of Equation 24 becomes a line interval at the interface

of these regions. The properties of Bevensee's formula follow

from postulating that the correct field is an exact sum of

20
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trial fields. For the case of an external homogeneous dielectric

support, for example, the longitudinal waves are the infinite sum

[Ez] = e-SoZ XAn(r)en(e pz) (34)

where the radial portion is proportional to a modified Bessel

function and depends upon region:

In In(Ynrl r < rt ap

In(YnrJ rtap

An (r) = 3n Rn(Tn r (35)

r]z:: r > rtape
The series is truncated and the coefficients are collected into

one column vector denoted C. Equation 31 indicates that the

reaction of the correct system with an approximate system is

always zero. If the approximate system a is taken as a second

collection of trial fields using coefficients B, the reaction

integral becomes the quadratic form

BtM(80 )C 0 (36)

for any arbitrary coefficients in B. This implies that the

detCM(00)J is zero for the correct system of fields. Notice

that unlike Bevensee's argument a perturbation did not have

to be invoked in concluding that the determinent of M($0 ) is

zero. Bevensee needs a perturbation because he starts with the

self reaction <*,c> . Our technique uses the reaction on the
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field of a second system directly. In fact, in our formulation,

arbitrary perturbations of coefficients in B are just another

set of coefficients.

F. Variational Nature of the Reaction Integral

If the system b or a is not an exact sum of trial fields,

suppose we include a perturbation p in the systems a and b from

the correct system: b* = C* + eb, a = C + X2a where e and X

are small numbers. The reaction <b*,a> is then variational about

0. That is,

(b*,a> - cXKp*,p> ,(37)

which is variational in the sense that

#I = 0 (38)

and

-), 0. (39)

X=O
C=0

For Bevensee's solution to succeed, one does not depend

upon this variational property. Instead, e must be a small
number. Specificallytafter truncation to N harmonic trial

fields, one assumes that the difference of the field with the

best selection of coefficients from the true fields is such that
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is very small. This concept will be discussed in greater

detail when convergence of Bevensee's method is discussed in

Section VII.

G. Symmetric Properties from Reaction

Bevensee's formula has been shown to be a quadratic

form given by Equation 25. Also,it was derived as a reaction

integral. Symmetric properties of the variational matrix

follow from reciprocity expressed as reaction integrals. In
particular,Equation 30 becomes the matrix equation

B$MC = -(C MB)* . (41)

One concludes

M -M . (42)

Also, the matrix M can be made purely imaginary by scaling all
4-jrr/4TM field coefficients by e and all TE coefficients bye-Ji/4

e / Because M(B0 ) is a pure imaginary symmetric matrix,
all TE waves are in phase as are all TM fields. The TE and

TM modes are out of phase by w radians. In addition, symmetry

allows the matrix to be filled using only the upper triangular

elements. This is particulary useful when numerical integrations

are needed in the computation of elements.
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2
SECTION IV

COMPUTATIONAL RESULTS FOR THE VARIATIONAL ANALYSIS

OF A SHEATH HELIX

Current spiralling along an infinite cylinder in free

space is known as a sheath helix. It is a configuration for

which the analytic solution of the field distributions are

explicitly known.1 The correct fields are linear combinations

of those trial fields written earlier in Equations 5(III)

through 10(111).

In applying the variational technique to this problem,

the propagation constant and trial field coefficients were
initially unknown. Each trial function harmonic, n, can form
an independent sheath mode. The variational matrix had

dimension 4 x 4. By finding the O corresponding to a singular0
matrix, the correct dispersion relation was found. Figure 7

shows that the exact dispersion can be recovered for the n=0

mode. The exact relative magnitude of the coefficients also

was found as the eigenvector corresponding to the zero eigenvalue.

We were also able to recover correct solutions for higher

harmonics.
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SECTION V

VARIATIONAL ANALYSIS OF A HELICAL TAPE

SUPPORTED BY AN HOMOGENEOUS DIELECTRIC REGION

This case differs from the sheath-helix analysis in that
the current is confined to a helically wrapped tape. Unlike
the sheath harmonics, the internal and external trial fields
are continuous over part of their interface as shown in Figure

4a.

At first four independent trial fields per angular harmonic

were combined in the variational technique. Unlike the sheath

case, the angular harmonics do not decouple. Computational
results were compared to those from a program based upon Paik' s

5analysis because it assumes an homogeneous external dielectric.
As will be shown, results for some combinations of harmonics

were excellent. However, spurious solutions appear with bad impe-

dances. Two techniques were developed to remove spurious solu-

tions. One made a modification to the variational expression. A
second method added continuity constraints which reduced the
number of independent trial field coefficients. Both approaches
are presented in this section.

A. Four Coefficients Per Angular Harmonic

When the variational technique was applied to the homogeneous
support structure, two trial field regions were used. A TE and
TM mode for each harmonic were placed in the trial region inside

the tape radius and in the region covering the dielectric.
Consequently, four trial fields are used for each angular

harmonic. For N harmonics combined in the analysis there are
4N unknown coefficients and the variational matrix has

dimension 4N x 4N.
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First, problems with an external free space region were

examined. The geometric configurations of the structures

examined are the same as those found in the Northrop final

report on the metal ceramic helix, except that a dielectric

or vacuum is placed in the external region. The pertinent

dimensions are found in Appendix A. Helix No. 2 was selected

because the approximations made in the Paik analysis are best

for a small gap-to-pitch ratio.

For the case of a single trial-field harmonic, (n=O),

no solution to the dispersion relation was found. For

the case of three harmonics (0,-1,1), two solutions close to

the expected dispersion value from the Paik theory were found.

The higher a0 of these two yielded the best impedance. Results

for this 00 from 10 to 20 GHz are compared to Paik in Figures

8 and 9. The agreement in impedance is excellent. The values

of phasevelocity using Paik are higher than those from the

variational analysis, but they are parallel.

As the number of trial field harmonics is increased, the

solution does not necessarily improve. When three harmonics

were combined, an examination of the field values at the inter-

face of the trial regions showed the electric field to be in

phase across the interface, while the magnetic field was i

radians out of phase. This is a proper configuration on the

conducting tape, but an incorrect state for the free-space

portion of the interface. As the number of trial fields increased,

the magnetic field remained discontinuous along the free-space

portion of the interface.

The impedance and dispersion for Helix No. 4 at 6 GHz

for various combinations of trial fields are shown in Table 1.

Note that multiple solutions again can be found. The results

do not appear to converge. As will be shown, the variational

27
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TABLE 1

PHASE VELOCITY AND IMPEDANCE FOR HELIX NO. 4

WITHOUT DIELECTRIC AT 6 GHz USING FOUR TRIAL FIELDS PER HARMONIC

Number of Trial Phase Velocity/ Impedance
Field Harmonics Speed of Light at Tape

3 .239 .46

3 .192 2.24

5 .258 39.7

7 .202 44.1

9 .228 81.3

9 .233 72.6

11 .438 72

13 .259 38

19 .231 123.1

Paik .245 88.3
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technique had to be modified before convergent results with

* correct values could be obtained.

B. Spurious Propagation Constants

In variational analysis, the measure of an equivalent

field is an identical reaction on the currents. Uniqueness

is not guaranteed and, therefore, multiple solutions are

possible.

The existence of multiple propagation constants makes the

automatic choice of the best solution difficult. In searching

for the best solution one is forced to consider the degree

to which specific proper boundary conditions have been met.

Multiple solutions do not disappear as more harmonics

are added to the trial fields. It is also possible to

have but one solution with a particular combination of trial

field modes and none with another.

In an attempt to remove difficulties associated with

multiple solutions, we have used constraints or added additional

variational terms. These methods are described in the

following sections. The conventions used in the remainder cf

this report is that the lowest 0 is the best solution.

Convergence of impedance and phase velocity are examined with

this convention. In theory, if all spurious solutions could

be removed, the higher harmonics of the slow wave structure could

also be predicted.

C. Use of Reaction Method to Generate a New Convergent

Variational Expression

The reaction method provides a means for devising additional

variational expressions by manipulating trial-field currents.
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As noted previously, the electric and magnetic currents are
added to the systen so that the boundary conditions of the

correct fields are met. These are

n
and

4. A -

I Mn =-mx -I" I (2)

where n refers to the trial field harmonic and m is a normal

at the interface of trial region I and II. Figure 10 depicts
adding a current on one side of the interface and cancelling
it on the other so that the boundary conditions are undisturbed.

Taking the currents as Sn and An, an additional term arises
in the variational expression. This is a method for weighing

some currents more than others.

Convergence of impedance and phase velocity have been

examined, using the revised formula. The lowest 0 was taken
as the solution. The spurious 0's were removed. Figures 11
through 13 show the improvement we found at 10 GHz in the
convergence of the electric field as the number of modes in

the trial fields are increased. Tangential H-field at the
interface of trial field regions remains 1800 out of phase.
Table 2 shows convergence of the impedance as the number

of modes increases.

D. Continuity Constraints at the Trial Field Interface

Because the tape is radially thin both the correct outer
and inner tangential electric fields are zero at the same

interface of the trial field regions. Since continuity already
exists on the free-space interface, this continuity exists for
all angles at the interface surface.
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I

TABLE 2

TRENDS USING NEW VARIATIONAL EXPRESSION ON COMPOSITE

HELIX NO. 2 WITHOUT DIELECTRIC

New Variational Expression at 10 GHz:

+1
No. Harmonics Vp/Cx 101 zI (a)

5 1.09 183

7 1.13 172

11 1.13 77

13 1.12 97.1

Paik Theory:

7 1.17 88.4

V - phase velocity

C - speed of light
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The angular dependence of the trial fields is contained

in the phase by Equation 2. It can be concluded that the

continuity constraint in tangential electric field should be

satisfied by each harmonic, n, of the trial fields because

the exponentials, eejn are orthoginal over 2ff. A careful

examination of the spurious solutions shows that this constraint

is not satisfied for each n. Consequently, some false R0

can be removed by explicitly enforcing this constraint.

Simultaneously, the number of independent field coefficients

per trial field harmonic is reduced from four to two.

Numerically, this has the advantage of reducing the size of

the variational matrix from 4N x 4N to 2N x 2N, where N is

the total number of trial field harmonics. Moreover, because

tangential electric fields are constrained to be equal, the

extra variational terms added in the last section by the

modified variational expression vanish. The problem is

simpler because only two types of mismatch in the boundary

condition remain: (1) the deviation from0 of the tangential

electric field at the tape, and (2) a noncontinuous magnetic

field at the free-space interface.

E. Use of Constraints to Obtain Convergent Results for

Impedance and Dispersion

By constraining the tangential electric field, the fields
and dispersion converge as the number of trial-field harmonics
increases. In addition, the true propagation constant is close

to the lowest solution of det M(%0A = 0. For Helix No.2,

with or without dielectric in the external region, results are

particularly close to those produced from the Paik 'theory. Tables

3, 4, 5 and 6 show the behavior of impedance and dispersion

as the number of harmonics increases. In Figures 14 through 17
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TABLE 3

HELIX NO. 2 WITHOUT DIELECTRIC GAP/PITCH = .35

No. of
Harmonics 10 GHz 15 GHz 20 GHz

SV/P C z(0) VP/C Z1 (11) VP/C z1 (0)

3 .108 93.6 .105 37.8 .104 20.0

11 .112 73.7 .107 35.7

17 .112 84.7 .109 47.2 .108 33.1

23 .113 88.9 .105 53.6 .110 33.3

Paik
(7 modes) 1 .117 88.4 .115 53.2 .113 32.9

ka .23 .34 .46

VP - phase velocity of 0-order harmonic
Z - impedance of 0-order harmonic

C - speed of light

- no singular matrix found

a - tape radius
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TABLE 4

HELIX NO. 2 WITH DIELECTRIC GAP/PITCH = .35

No. of

Harmonics 10 GHz 15 GHz 20 GHz
Vp/C z () Vp/C Z 1(2) Vp/C Z I)

Variational

3 .0605 28

17 .0618 32 .0619 23.45 .0619 17.62

23 .0623 36 .0625 27.5 .0626 20.62
Paik

(7 modes) .0639 40.3 .0641 29.8 .0645 18.9

Measured
by .085 .09 9.5 .092 5.1

Northrop

V - phase velocity of 0-order harmonic

Z - impedance of 0-order harmonic

C - speed of light

- no singular matrix found

NOTE: Both the variational analysis and Paik theory used an
homogenous dielectric which was the average dielectric
by volume in Northrop's spiral dielectric structure.
( = 4.72)
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TABLE 6

HELIX NO. 4 WITHOUT DIELECTRIC GAP/PITCH .77

No. of
Harmonics 2 GHz 5 GHz 8 GHz

Vp/C Z(I) Vp/C Z(Q) V p/C Z(Q)

17 .250 68.7 .270 70.4 .255 60.0

2 .253 69.7 .250 66.3 .257 64.1

Paik

(7 modes) .236 100.9 .245 91.4 .245 82.3

ka .062 .155 .245

VP - phase velocity of 0-order harmonic

Z - impedance of 0-order harmonic

C - speed of light

a - tape radius
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a comparison between the Paik theory and the variational

analysis is made over an octave in frequency using Helix

No. 2. Results with and without an external dielectric are

shown using 23 trial field harmonics. Excellent agreement in

both impedance and dispersion is found. Table 3 shows there is

improvement in the impedance and phase velocity as the number

of harmonics increases. In Table 4 some results at three

frequencies for Helix No. 2 with a homogeneous dielectric are

shown. At the few combinations examined, results improve as

more modes are combined. In Table 5, results for Helix No.

1 without dielectric at three frequencies are given. Phase

velocity is again similar to that calculated from Paik's theory.
Impedance is in good agreement with Paik's at the lowest

frequency, but it differs increasingly more at the higher

frequencies. The Paik analysis used assumed a constant field

in the gap region. As the gap to pitch ratio increases, this

approximation should yield poorer impedances. In Table 5 some

results for a large gap to pitch ratio are presented. By

increasing the number of harmonics from 17 to 27,impedance and

phase velocity do not change greatly. Impedances differ

greatly from Paik's.

Although the impedance and phase velocity are better

behaved, an examination of the boundary fields indiqates that

the magnetic field has remained n radians out of phase across

the free-space interface even when large number of harmonics

are combined. In some cases there appears to be a larger

current at the free-space interface than on the metal tape.

The current on the tape usually peaks at the ends of the tape

as it should.

Lack of continuity of the H-field free-sapce region-
is attrihuted to Bevensee's choice of trial fields, In
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Section VII and VIII, the need for additional trial fields is

shown in detail. Bevensee avoided using these partly because

they did not satisfy Maxwell's equation and thereby introduced

volume integrals. In spite of Bevensee's set of trial fields,

our results show that good convergent results can be attained

if one uses a large number of harmonics.

The computer program, denoted HELIX, using two independent

trial fields per angular harmonic, typically occupies about

90K of fast memory. Values of impedance, phase velocity,

field coefficients and attenuation are calculated over a

specified frequency range. CPU time grows exponentially

with the number of trial field harmonics. Whereas a case

at a single frequency using three harmonics typically consumes

4 seconds of CPU time, the same case analyzed with 23 modes

may take some 90 seconds.
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SECTION VI

VARIATIONAL ANALYSIS OF A SPIRAL DIELECTRIC SUPPORT

The metal-ceramic helix has a spiralling dielectric
support (Figure 4), fabricated by depositing the ceramic

i' on top of the helical tape. The great advantage of the
variational method is that the geometry of their dielectric
region is included in the variational expressions. The analyses

of the spiral dielectric, slow-wave structures involve two

types of models: (1) models with two trial field regions,

and (2) models with three trial field regions.

A. Two Trial Field Regions

When two trial field regions are used, there are four

trial fields per harmonic just as there were for the homogeneous

support. However, the spiral dielectric introduces a new radial

discontinuity in the external dielectric, in that the dielectric

constant abruptly changes across the radial interface between

free-space and ceramic (Figure 6).

The geometry of the support enters the variational formula

as a volume integral. Specifically for a set of trial functions

using dielectric constant ep, the first term of the variational

formula in Equation 25(111) becomes

I Vol= f+ jWE(cp-C D) dV D

SPIRAL DIELECTRIC

-0. 49.
+f + iW(Cp- E0 )E +  E* dVF  (3)

SPRIAL FREE SPACE
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where ep is the trial fields' dielectric and ED is that of the

ceramic. Because the trial fields have a simple exponential

dependence upon coordinates and 0, this volume integral reduces

to an integration along the radius of the external region which

must be computed numerically.

First, continuity constraints were applied at the tape

radius so that only two independent coefficients per space

harmonic exist. There were H[C + N numerical integrations

needed in the analysis, where N is the total number of trial
field harmonics. Because the modified Bessel functions are

asymptotically exponential and the correct fields should decay

in the external region, the computational time was decreased

by using an eight-point Gaussian quadrature integration scheme.

Test cases with harmonic n=5, showed agreement between the

Gaussian integration and more costly adaptive integration

schemes through the fifth decimal place. By limiting the sampling

of the integrand to eight fixed points, Gaussian integration

schemes had the additional advantage of allowing components

of the field at the sampled radii to be computed only once and

stored. They were combined into several integrands when needed.

This drastically reduced computational time in the numerical

integrations.

The two independent coefficients per trial field harmonic

analyses of the spiral dielectric were extremely sensitive to

the dielectric of the external field region, ep. The use of

a mean dielectric by volume yielded the best results. However,

small changes resulted in large changes in the computed

propagation constants. Numerical results were compared to

experimental results listed in the Northrop final technical report
11Thsiuaephs

on the composite metal-ceramic helix. The mimulated phase

velocity for Helix No. 2 at 6 GHz was eighty percent of the

measurement.
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To give more freedom to the external trial fields, the

continuity constraint at the tape was removed. This quadrupled

both the size of the variational matrix as well as the number

of numerical integrations required. This analysis was also

extremely sensitive to the value of the dielectric used for the

external trial field region. Best results were obtained for

Helix No. 2 using an average dielectric for the external trial

field region. Phase velocity was within about 15 percent of

measured values for frequencies of 6 and 10 GHz. Results for

Helix No. 4, which had a large gap-to-pitch ratio,were not nearly
as good.

B. Three Region Problems

Because the two region analysis of the metal-ceramic helix

was so sensitive to the trial-field dielectric, a three-region

model was developed in which an additional set of TE and TM

trial fields using the dielectric of the ceramic were placed

over the spiraling-dielectric support. This meant that a

total of six fields with harmonic dependence e 
jn * must be

combined. The variational matrix takes on a size of 6N x 6N.

Because the radial tape thickness can be as much as 50 percent

of the tape-to-shield distance, the effective volume occupied by

the dielectric was changed by the thin tape assumption. Therefore,

a radially thick tape was modeled as shown in Figure'6. This

required additional numerical integrations over the radial sides

of the tape, where the tangential electric field was not zero.

In this model, then, geometry is modelled exactly. No average

dielectrics nor dimensions are assumed.

The three-region problem requires numerical integration in

the computation of variational terms at the radial interface of

the external, free-space region and dielectric region. As in
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the two-region problem, these are integrations along the radius.

Applying the symmetry of the reaction integral from Equation

37(111), the number of numerical integrations can be reduced

from 16 per harmonic to 4. Counting the numerical integration

along the sides of the tapea total of 8 • + numerical

integrations are needed in combining all fields within N

trial field harmonics. An eight point Gaussian-quadratic

scheme was employed so that the field components could be

computed and stored at fixed samples along the radius and combined

into one of the many integrands when required. CPU time for this

analysis is still considerable. Figure 18 shows the CPU time

needed to make all calculations as a function of the number of

trial fields combined when executed on the Harris 550. The time

increases exponentially with the number of trial field harmonics.

At a frequency of 10 GHz on Northrop's ceramic Helix No.

2, convergence of dispersion and line impedance was examined

as a function of the number of trial field harmonics. These

results are shown in Figures 19 and 20. The harmonics combined

were different for the runs summarized by Figure 20 in that

certain harmonics, thought to cause numerical instability because

they had little contribution to the total field, were excluded.

The phase velocity is much more erratic than it had been for the

homogenous support model. Impedance at the line varies even

more, although deleting certain harmonics makes the values

considerably more stable. Numerical comparisons between

adaptive and eight-point Gauss-Quadrature integration indicates

that for a large number of trial field harmonics, the precision

of the Gaussian method in the power flow integration is down

to two or three decimal places. This accounts for the divergence

of impedance. It appears that more samples along the radius

are needed in the numerical integration for better results

at large combinations of harmonics for both impedance and
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Variational Analysis
10 GHz
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Figure 19. Trends in line impedance phase velocity
as the number of trial fields increases
-on composite Helix No. 2.
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Helix No. 2.
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dispersion calculations. Figure 21 shows the dispersion for

Helix No. 2 over a large frequency band using 9 and 21

harmonics. As can be seen, the computed results are much better

than Paik and fairly parallel to measured results when 21 modes

were used.

Helix No. 4, which has a large gap-to-pitch ratio, was

examined atone frequency. Results for phase velocity were again

large compared with measurement. This case is mentioned because

a main motivation in using three regions was a lack of agreement

between measurement and simulation when the two-region

variational analysis was applied to Helix No. 4.

Extensive simulation of structures provided by Hughes

Electron Dynamics Division have also been made. These are

particularly of interest because quantitative data of dispersion

and impedance,as well as qualitative changes when the dimensions

were perturbed,can be seen. Results are presented here with

frequency and geometric parameters normalized.

Figure 22 shows convergence properties for one Hughes

structure. The behavior is similar to that of the Northrop

ceramic structure. In Figure 23, results over a wide frequency

band are compared to experiment forll, 19, and 23 harmonics

combined. All combinations give results closer than Paik.

For 23 harmonics, the computed dispersion is extremely close

to the measured results as is shown in Figure 24,using a finer

scale in phase velocity.

Hughes perturbed the axial tape thickness in their structures.

When the gap-to-pitch ratio is increased from .38 to .61, the

dielectric loading of the external media decreases. This has

the effect in both experimental and calculated results of

increasing the phase velocity. Figure 25 shows calculated

and measured responses over an octave of frequency. Although
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Figure 21. Comparisons between phase velocities from
variational method, Paik theory and experiment
for composite metal ceramic Helix No. 2.
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simulation at 11 modes showed the increase in dispersion, the

slope differs sharply from the calculated results.

Hughes also perturbed the shield diameter by increasing

and decreasing this dimension by 10 percent. There are two

opposing factors in such an experiment. By increasing the

shield diameter, the phase velocity will tend to rise because

the shield loading becomes close to that of a shieldless

structure. At the same time, the effective dielectric loading

is increased because more dielectric is contained in the

external region. Shield loading is shown to dominate in this

case as indicated in Figure 26. The computed dispersion from

the three region variational analysis seems to be dominated by

dielectric loading because the phase velocity has decreased

with the increasing shield diameter. However, the movement

is so slight that it is well within the present precision of the

variational technique. It should be noted that predicted phase

velocity remains nearly parallel to the measured dispersion.

We also examined other Northrop ceramic coated helices,

though not in as much detail. Results for Helices No. 1 and 3

at three frequencies are shown in Figures 27 and 28 respectively.

C. Numerical Difficulties in Three Region Ceramic-Coated

Helix Problems

By using three trial field regions instead of two,all

actual geometric dimensions and dielectrics could be used without

resorting to average or effective dimensions or dielectrics.

At the same time, convergence properties, especially with

regard to impedance, were sacrificed. Moreover, the dimension

of the variation matrix grew rapidly with the number of trial

field harmonics. This led to numerical instability in the

calculation of the determinant of the matrix which was compounded
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by perturbations introduced by imprecision in the numerical

integration scheme for higher order modes.

Having six unknown fields per trial-field harmonic also

introduced spurious solutions to the dispersion in much the

same manner as four independent fields per harmonic affected

the homogeneous support simulation. Our convention was to

pick the smallest 0. This may have been too arbitrary a

convention.

Multiple solutions exist because in the variational

technique the measure of equivalence of a sum of trial fields

jis their reaction with the correct currents in Rumsey's reaction

integral. Two systems may have the same reaction even if they

are not equivalent. Results suggest that introducing a great

amount of freedom by supplying six trial fields per harmonic

can produce several combinations of fields with equivalent

reaction.

In the analysis of the homogeneous external support, two

techniques were shown to remove false solutions to the variational

analysis. Parallel developments have not been made for the

spiralling support, and should be included in future work on

the variational technique. The specific proposals are found in

Section VIII.

Another main numerical instability was the determination of

the singular matrix. The search routine favored situations in

which the sign of the determinant changed. It is easy to miss

singularities through which the sign of the determinant did

not change. It is also easy to miss the smallest 80 corresponding

to a singular matrix if the sign changed more than once in an

interval.

The amount of storage required for the three-region-spiral

dielectric computer program (SPIRAL) is much greater than that
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for the homogeneous case. When 13 angular harmonics are

combined, 110K of fast memory are required. As noted

-previously, the CPU time used grows exponentially with the

number of harmonics combined (see Figure 18).

A
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SECTION VII

ERRORS INTRODUCED BY BEVENSEE'S CHOICE

OF THE TRIAL FIELD

The fundamental approximation in the variational analysis

is that the correct field can be written as a sum of cylindrical

harmonics . Errors are introduced by (1) truncation of the

series or (2) an inability to adequately represent the field

with the cylindrical harmonics chosen. Expressing the exact

system c as a sum of a truncated series of cylindrical modes,

denoted by system a plus an error term ep where the fields

of p have norm equal to 1, yields

= + .)

If an arbitrary sum of modes is given by system b, Equation

31(111) implies that

0= Kb2,a*> + s~b,p*> (2)

The first term in 2 is just the quadratic form BtM(0)C

of Equation 25(111), when B and C are column vectors of

coefficients of the cylindrical modes.

Clearly if e = 0, then detM(0] = 0. The fields

produced by the sheath current problem fall into this category

because the fields are indeed an exact sum of Bevensee's trial

fields. It should be noted that our computer program quickly

and correctly found the propagation constant for this case.

Otherwise c should be very small for some optimal combination of

trial field harmonics. The case det(M) = 0, implies that the
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reaction is zero for any b. However, E may be large if the

reaction <b,p*> is zero for any b.

The fundamental assumption is the existence of a combination

of trial fields which make e so small that M(80 ) can be considered

singular. Bevensee's representation of the trial field is

actually a decomposition into spiralling angular harmonics in

terms of TE and TM longitudinal components:

E C R (y)
r 8  e (3)

HZ L 2nSn(Y)

where R and Sn are modified Bessel functions, C1 n are the

constants of each of the trial field components and is an

angle which rotates with the helix. The functions e jn  are a

complete basis as are the modified Bessel functions. However,

Bevensee fixes n=m in order to make each individual trial field

a solution to Maxwell's equations. It is our contention that

this is too severe a restriction of the trial fields. The

simple product of exponential and Bessel functions is not complete

over the r- surface.

The boundary conditions are violated by the trial function

simultaneously across the tape radius and constant angles, p.

For a given n, Ezn and HZn cannot simultaneously be made continuous.

This means that the continuity of the H-field across the tape

radius and the condition of a zero tangential E-field along the

tape radius must both be satisfied by higher harmonics. Notice

the E-field problem is only along J,, while the H--field discon-

tinuity is only across a constant radius. In our variational

solutions, many modes are needed primarily because the E-field

problem and H-field problem compete. The following section
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describes a planned modification which should allow continuity

of the H-field and decrease the number of harmonics needed,

thereby making the variational technique much more economical.

7
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SECTION VIII

SUGGESTIONS FOR FUTURE WORK

A. Alternate Trial Fields

Additional terms should be added to the Bevensee's set

of trial fields so that the collection is complete. Specifically

express the longitudinal fields in each trial region as

the sum in n and m of functions

FEz N M C1  em8 Z -jnipz e- ja lnm Rm((nZ)
= )i>

IHI 0: £. C S (a Z)e-nn= m=0 2nm m n

where Rm, Sm , n, p are described in Section III. For (n=m),

both Ez and Hz satisfy Maxwell's equation. This is the subset

Bevensee used because only surface integrals remain in the

variational formula for simple problems.

When n~m, volume integrals arise in Bevensee's formula.

Equivalently, in Rumsey's reaction integral, volume magnetic

and electric currents are added to the trial fields so that

Maxwell's are satisfied.10  These must be integrated over the

volume of the structure.

The trial fields of Equation 1 have sufficient freedom to

satisfy both E-field and H-field mismatches simultaneously.

Also, minor modifications of the program architecture will

be needed. In this way, it is anticipated that fewer angular

harmonics will be needed in the approximate field because at a

given angular harmonic, continuity of the longitudinal component

of the E.field at the tape will not create a discontinuity in the

H-field.
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Because nearly correct boundary values in both E and H fields

are possible with an optimal combination of trial fields, the

number of spurious solutions should diminish too.

B. Reduction of Trial Field Harmonics by Point Matching

The existence of multiple solutions to the propagation

constant for the homogeneous dielectric support problem

was reduced by adding constraints from the continuity of the

E-field across the tape radius. This reduced the number of

unknown coefficients. These constraints do not exist for each

harmonic for the spiral dielectric problem. However, continuity

can be enforced at selected points along a particular interface

on the total field. The number of independent trial field

coefficients will then be reduced by four at each point where

all boundary conditions are enforced.

14
This method is similar to point matching, wherein sums

of modes are placed in different sections of a structure and

then matched along the interface of the partitions. Point

matching typically uses all the unknown field coefficients

to generate a matrix singularity at the propagation constant.

It is usually successfully used when the structure has a large

amount of symmetry.1 5

In the method proposed here, the variational expression

would still be used, but the total trial field would be con-

strained at certain points. Results should be superior to those of

of pure point matchina because a solution to the variational

expression has the co ect reaction. Also, the interfaces

are much more drastic than commonly encountered with point

matching.

I
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C. Use of Other Variational Expressions on the Spiral Dielectric

Results for the homogeneous dielectric drastically improved

when an additional variational term was placed over the free-

space region. Characterization of this term as weighing the free-

space portion of the problem more heavily was made. No attempt

has been made to add similar terms in the spiral dielectric

simulation because additional numerical integrations would be

required. Nevertheless, it is likely that the occurence of multiple

solutions could be minimized by this technique on the spiral

dielectric.
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SECTION IX

CONCLUSIONS

Harris SAI has developed a variational analysis of several

helical slow-wave structures. The formula of Bevensee was

used. This was shown to be a measure of the reaction of the

approximate field with the correct currents as defined by

Rumsey. Through this reaction concept effects of using an

approximate sum of trial fields were derived.

The variational analysis of the sheath helix gives the

exact phase velocity and trial function coefficients. When

the variational analysis is applied to the homogeneous dielectric

supportmultiple solutions to the phase velocity appear. These
are eliminated by either adding a variational term to Bevensee's

formula or else reducing the number of unknown trial coefficients

by applying constraints at the interface of trial regions.

Results of phase velocity and impedance are extremely close to

those found by a Paik analysis when the gap-to-pitch ratio is

small.

The variational analysis was also applied to a spiraling
dielectric support. If two trial regions were used, the results

were too sensitive to the dielectric of the external trial

region. A three-region analysis with thick tape was developed

so that the complete geometry and all dielectrics were included
in the model. Results were compared to cold-test data supplied

by Northrop and Hughes. Multiple solutions again appeared.

The lowest solution for a0 changed greatly with different

combinations of modes, as did the impedance. Nevertheless,

there were combinations of trial function harmonics for which

excellent agreement between simulation and experiment over a

wide frequency range was observed.
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The results suggest that more work should be done on the

modeling of the spiral dielectric support. As described in

Section VIII, it is suggested that a new set of trial fields and

continuity constraints to minimize the occurrence of multiple

B0's be accomplished. Considerable improvement in the accuracy

and economy of the variational model is expected. A viable

solution to the spiral dielectric support can be extended

quickly to cases using alternative support structures.
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APPENDIX A

Data for a Northrop Corp. Metal-Ceramic Tape Helix

Manufacturer:

Northrop Corporation Defense Systems Division
175 W. Oakton Street
Des Plaines, IL 60018

Helix Identification Number: 1, 2, 3, and 4

Date Supplied To: Dr. Donald M. MacGregor

Harris SAI, Inc.
611 Church Street
Ann Arbor, MI 48104
313/761-8612

A. For the helix and shield:

1. Material of tape: Copper
2. Electrical conductivity: 5.8 x 10 mho/meter

3. Material of shield: Aluminum

4. Electrical conductivity: 3.5 x 107 mho/meter

5. Inner radius of helix tape: (1)2.501, (2)0.9906,(3)1.35,

(4)1.35 mm

6. Outer radius of helix tape: 2.769, 1.232,1.61,1.61 mm

7. Radius of conducting shield: 3.81, 1.613, 2.30, 2.30 mm

8. Pitch of helix tape: 2.489, 0.7874, 1.09, 2.27 mm

9. Width of the tape on the cylindrical surface, as
measured at right angles to the spiral edge of the tape:
1.245, 0.51, 0.51, 0.51

B. For the dielectric support:

1. Material: Beryllium Oxide

2. Isotropic or anisotropic dielectric: Isotropic

3. Dielectric constants along principal axes: 6.7

4. Dielectric constant in radial direction:

5. Dielectric constant in angular direction:
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C. Frequency Range

1. Low end of band: 2.0, 3.0, 1.4, 1.4 GHz

2. High end of band: 5.5, 12.0, 8.0, 8.0 GHz

D. Additional Information

The dielectric constant of beryllium oxide was supplied

by Mr. Glenn Rees of Brush-Wellman, Inc., Elmore, Ohio.

The remaining numbers are taken from Northrop Technical

Report AFAL-TR-77-206, p. 34. 11
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